scholarly journals Eddy Transport of Heat and Thermocline Waters in the North Pacific: A Key to Interannual/Decadal Climate Variability?

2001 ◽  
Vol 31 (3) ◽  
pp. 675-687 ◽  
Author(s):  
Dean Roemmich ◽  
John Gilson
2001 ◽  
Vol 18 (1-2) ◽  
pp. 51-70 ◽  
Author(s):  
D. W. Pierce ◽  
T. P. Barnett ◽  
N. Schneider ◽  
R. Saravanan ◽  
D. Dommenget ◽  
...  

2021 ◽  
Vol 34 (1) ◽  
pp. 123-141
Author(s):  
Qinxue Gu ◽  
Melissa Gervais

AbstractDecadal climate prediction can provide invaluable information for decisions made by government agencies and industry. Modes of internal variability of the ocean play an important role in determining the climate on decadal time scales. This study explores the possibility of using self-organizing maps (SOMs) to identify decadal climate variability, measure theoretical decadal predictability, and conduct decadal predictions of internal climate variability within a long control simulation. SOM is applied to an 11-yr running-mean winter sea surface temperature (SST) in the North Pacific and North Atlantic Oceans within the Community Earth System Model 1850 preindustrial simulation to identify patterns of internal variability in SSTs. Transition probability tables are calculated to identify preferred paths through the SOM with time. Results show both persistence and preferred evolutions of SST depending on the initial SST pattern. This method also provides a measure of the predictability of these SST patterns, with the North Atlantic being predictable at longer lead times than the North Pacific. In addition, decadal SST predictions using persistence, a first-order Markov chain, and lagged transition probabilities are conducted. The lagged transition probability predictions have a reemergence of prediction skill around lag 15 for both domains. Although the prediction skill is very low, it does imply that the SOM has the ability to predict some aspects of the internal variability of the system beyond 10 years.


2010 ◽  
Vol 23 (21) ◽  
pp. 5668-5677 ◽  
Author(s):  
Vladimir A. Semenov ◽  
Mojib Latif ◽  
Dietmar Dommenget ◽  
Noel S. Keenlyside ◽  
Alexander Strehz ◽  
...  

Abstract The twentieth-century Northern Hemisphere surface climate exhibits a long-term warming trend largely caused by anthropogenic forcing, with natural decadal climate variability superimposed on it. This study addresses the possible origin and strength of internal decadal climate variability in the Northern Hemisphere during the recent decades. The authors present results from a set of climate model simulations that suggest natural internal multidecadal climate variability in the North Atlantic–Arctic sector could have considerably contributed to the Northern Hemisphere surface warming since 1980. Although covering only a few percent of the earth’s surface, the Arctic may have provided the largest share in this. It is hypothesized that a stronger meridional overturning circulation in the Atlantic and the associated increase in northward heat transport enhanced the heat loss from the ocean to the atmosphere in the North Atlantic region and especially in the North Atlantic portion of the Arctic because of anomalously strong sea ice melt. The model results stress the potential importance of natural internal multidecadal variability originating in the North Atlantic–Arctic sector in generating interdecadal climate changes, not only on a regional scale, but also possibly on a hemispheric and even a global scale.


2012 ◽  
Vol 25 (21) ◽  
pp. 7625-7642 ◽  
Author(s):  
Yuki Tanaka ◽  
Ichiro Yasuda ◽  
Hiroyasu Hasumi ◽  
Hiroaki Tatebe ◽  
Satoshi Osafune

Diapycnal mixing induced by tide–topography interaction, one of the essential factors maintaining the global ocean circulation and hence the global climate, is modulated by the 18.6-yr period oscillation of the lunar orbital inclination, and has therefore been hypothesized to influence bidecadal climate variability. In this study, the spatial distribution of diapycnal diffusivity together with its 18.6-yr oscillation estimated from a global tide model is incorporated into a state-of-the-art numerical coupled climate model to investigate its effects on climate variability over the North Pacific and to understand the underlying physical mechanism. It is shown that a significant sea surface temperature (SST) anomaly with a period of 18.6 years appears in the Kuroshio–Oyashio Extension region; a positive (negative) SST anomaly tends to occur during strong (weak) tidal mixing. This is first induced by anomalous horizontal circulation localized around the Kuril Straits, where enhanced modulation of tidal mixing exists, and then amplified through a positive feedback due to midlatitude air–sea interactions. The resulting SST and sea level pressure variability patterns are reminiscent of those associated with one of the most prominent modes of climate variability in the North Pacific known as the Pacific decadal oscillation, suggesting the potential for improving climate predictability by taking into account the 18.6-yr modulation of tidal mixing.


2010 ◽  
Vol 3 (11) ◽  
pp. 762-765 ◽  
Author(s):  
E. Di Lorenzo ◽  
K. M. Cobb ◽  
J. C. Furtado ◽  
N. Schneider ◽  
B. T. Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document